Architectural patterns in branching morphogenesis in the kidney.

نویسندگان

  • Q al-Awqati
  • M R Goldberg
چکیده

During kidney development, several discrete steps generate its three-dimensional pattern including specific branch types, regional differential growth of stems, the specific axes of growth and temporal progression of the pattern. The ureteric bud undergoes three different types of branching. In the first, terminal bifid type, a lateral branch arises and immediately bifurcates to form two terminal branches whose tips induce the formation of nephrons. After 15 such divisions (in humans) of this specifically renal type of branching, several nephrons are induced whose connecting tubules fuse and elongate to form the arcades. Finally, the last generations undergo strictly lateral branching to form the cortical system. The stems of these branches elongate in a highly regulated pattern. The molecular basis of these processes is unknown and we briefly review their potential mediators. Differential growth in three different axes of the kidney (cortico-medullary, dorsoventral and rostro-caudal) generate the characteristic shape of the kidney. Rapid advances in molecular genetics highlight the need for development of specific assays for each of these discrete steps, a prerequisite for identification of the involved pathways. The identification of molecules that control branching (the ultimate determinant of the number of nephrons) has acquired new urgency with the recent suggestion that a reduced nephron number predisposes humans to hypertension and to progression of renal failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Image-Based Modelling of Kidney Branching Morphogenesis

Kidney branching morphogenesis has been studied extensively, but the mechanism that defines the branch points is still elusive. Here we obtained a 2D movie of kidney branching morphogenesis in culture to test different models of branching morphogenesis with physiological growth dynamics. We carried out image segmentation and calculated the displacement fields between the frames. The models were...

متن کامل

Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions.

The mechanisms by which the branching of epithelial tissue occurs and is regulated to generate different organ structures are not well understood. In this work, image analyses of the organ rudiments demonstrate specific epithelial branching patterns for the early lung and kidney; the lung type typically generating several side branches, whereas kidney branching was mainly dichotomous. Parameter...

متن کامل

Developmental Programming of Branching Morphogenesis in the Kidney.

The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed t...

متن کامل

Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism.

The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by othe...

متن کامل

Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse

We report that activin profoundly alters epithelial branching morphogenesis of embryonic mouse salivary gland, pancreas and kidney rudiments in culture, indicating that it may play a role as a morphogen during mammalian organogenesis. In developing pancreas and salivary gland rudiments, activin causes severe disruption of normal lobulation patterns of the epithelium whereas follistatin, an acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kidney international

دوره 54 6  شماره 

صفحات  -

تاریخ انتشار 1998